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Introduction Conventional Formalism

Since the pioneering papers from Richard Tolman, Julius Oppenheimer, &
Gregory Volkoff,
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standard models of the stellar structure of non-rotating neutron stars
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Motivation

» Efrain Ferrer

» Vivian de La Incera
have calculated an EoS for this type of model—Which finds distinct pressure gradients
both in the radial (P;) and polar (P |) directions.

PHYSICAL REVIEW C 82, 065802 (2010)

Equation of state of a dense and magnetized fermion system

Efrain J. Ferrer, Vivian de la Incera, Jason P. Keith, Israel Portillo, and Paul L. Springsteen
Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
(Received 4 October 2010; published 10 December 2010)

The equation of state of a system of fermions in a uniform magnetic field is obtained in terms of the
thermodynamic quantities of the theory by using functional methods. It is shown that the breaking of the O(3)
rotational symmetry by the magnetic field results in a pressure anisotropy, which leads to the distinction between
longitudinal- and transverse-to-the-field pressures. A criterion to find the threshold field at which the asymmetric
regime becomes significant is discussed. This threshold magnetic field is shown to be the same as the one required
for the pure field contribution to the energy and pressures to be of the same order as the matter contribution.
A graphical representation of the field-dependent anisotropic equation of state of the fermion system is given.
Estimates of the upper limit for the inner magnetic field in self-bound stars, as well as in gravitationally bound
stars with inhomogeneous distributions of mass and magnetic fields, are also found.

DOI: 10.1103/PhysRevC.82.065802 PACS number(s): 21.65.Mn, 21.65.Qr, 26.60.Kp, 97.60.Jd
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Motivation

® Hence, we will need derive stellar structure equations that will utilize this type of EoS
model.

® Goal is to obtain TOV-like equation(s) that will let us calculate stellar properties such
as masses and radii.

® Examine if deformation makes any significant changes to mass.
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Consequences of Deformation

® The total gravitational mass of these deformed compact objects is expected to change...
® Thus also leading to a different gravitational redshift zs...

Mspherical # Mdeformed
Z’sphericaul # Z’de’formed

® Thus the internal properties (i.e. pressure) must approach zero both in the equatorial
(r) and polar (z) directions...
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Consequences of Deformation

® Due to having distinct radial and polar directions, these oblate and prolate stars are
expected to have a non-zero quadrupole moment as described by (Herrera et al. 1999):

/y
Q = §M3 (1—~7)
M = Total Mass

~v = Describes the degree of deformation
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| B . Axially Symmetric

e — | ¢ r ;
Weyl (Weyl H. 1918) Metric
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Parameterization

Since we have distinct radial and polar directions—Need axially symmetric structure
equations in this framework using General Relativity (Field Equations...)
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|

2?dt? — 22 dr? — r?2d#? — r’sin ( )dgb Spherically Symmetric

o Simplify this scenario by parameterizing the z-component.

> Wi
» Stil
® Calcul

1 allow us to use an EoS in the limiting case of Isotropic energy-density.
| maintain deformation structure.

ate stellar properties such as mass and radii.

® Investigate any changes from the standard spherical model.
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Parameterization
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where:
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In the case for y =1, we obtain the metric for a spherically symmetric object and will have
the form (Esposito & Witten 1975, Herrera et al. 1999):
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Parameterization
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Parameterization

Using the parameterized metric, we make an anzats for a metric that will take the
form?:2

Prolate Spheroid Z=\T Oblate Spheroid

[1] O. Zubairi, A. Romero, and F. Weber, ]. Phys. Conf.: Ser. 615, 012003 (2015)
[2] O. Zubairi et al, Arxiv:1504-03006v1, (2015) 21



Parameterization

Using the parameterized metric, we make an anzats for a metric that will take the
form?:2

9 —7
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v>1 v=1 v<1
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Einstein’s Field Equations

T, =(e+ P)u"u, + 9", P, 1

Gi= Ry — §R =Ty
1

1 G.=R.—-R=-T .
G", =R, — - gt = —8xT", :
1

¢_ po _ ¢

Use together G¢: Rqﬁ — §R — —Tq5

2 -
ds® = e*®dt? — (1 | m(r)) dr® — r2df* — r? sin*(0)d¢?

r
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Einstein’s Field Equations

T, =(e+ P)u"u, + 9", P, 1
G;;E Ri — §R — —Ttt ]
1
1 G.=R.—-R=-T .
G", =R, — g, = —87T% :
1
b_ pP _ @
Use together Gq5: Rqﬁ — §R — —qu
—
ds® = e*®dt* — (1 | 2”7;(”) dr® — r2df* — r? sin*(0)d¢?

Will have to recalculate Ricci tensor & the Ricci scalar...
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Einstein’s Field Equations

The non-vanishing Christoffel symbols are calculated to be:
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Einstein’s Field Equations

The non-vanishing Christoffel symbols are calculated to be:

T _ lgab (3913# | 091)1/ 89/“/)

|
ox? ot Oxb

Frtt — 6 eZCI)(r)(I)/(T) 7Fttfr — (I)/(T) ;

rro 20 —m/ (r)r +m(r)] T, =T, — 1 |
r|—r 4 2m(r) r

Free — _6 T ,F(I)(I)(I) — COt(@) ]

[Mye = —3 rsin®(6) ,I%, = —sin(8) cos(d) ,
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Einstein’s Field Equations

The non-vanishing Christoffel symbols are calculated to be:

7, = 3o (% Do o)

|
ox? ot Oxb

Frtt =0 eZCI)(r)(I)/(T) 7Fttfr — (I)/(T) ;

rro 20 —m/ (r)r +m(r)] T, =T, — 1 |
r|—r 4 2m(r) r
Free — _6 T ,F(I)(I)(I) — COt(@) ]

[Mye = —3 rsin®(6) ,I%, = —sin(8) cos(d) ,

where the primes denote derivatives with respect to the radial coordinate, r, and

o (r - zrm(r)>’y
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Einstein’s Field Equations

t __ 1 / / / / 2
RE = oy (B2 0 () = & ()m(r)y = (#'(r) ()

— " (r)r? + 20" (r)rm(r) — 2" (r)r + 4@’(r)m(fr)}

L= ! — BD" (r)r® — 20" (r)r?m(r '(r))? 3 — "(r)) r2m(r
Rr—r2(r_2m(r))[ BOT(r)re =207 (r)r*m(r) 4+ (®'(r)) 2(®"(r)) (r)
=y (r)ym’ (r)r® + @' (r)yrm(r) — 2ym’(r)r + QVm(T)} Ricci Tensor Components
1 25/ / /
RY = gy L~ B0 0) + 26702/ (rym(r) + Sy () = frym(r)

+ r—2m(r) — By + Qﬁm('r)}

R} = R}
R = > (T _22m(r)) [57(1)’(7“)777/(7“)7«2 _ 57<I>’(7“)m(7“)’r e ((I)’(?“))2 3
Ricci Scalar: +28(®'(r)” r’m(r) — BO" (r)r® + 280" (r)r’m(r) — 2m(r) A= (T _ 2767771(”)’y

— 2B872® (r) + 48P (rYm(r) + 2Bym/ (r)r — 2B8ym(r) +r

—2m(r) — By +28m(r)]
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Einstein’s Field Equations

1
t— pt _ t
1
T — r __ T
Substitute Ricci tensor components & GT - R?“ 2 It = Tr )
Ricci Scalar into the field equations: 1
0_ b _ 0
GQZ Re — §R — _T9 ]
And Solve!!

1
b_ pP R ch
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Modified Hydrostatics

The stellar structure equation is derived to bel.2:

e = Energy Density, P = Pressure, m = mass, 7r = radial distance

v = Deformation Constant

Total Mass of our mass distribution is: M = m(r)
where ris defined to be when P(r = R) =0

[1] O. Zubairi, A. Romero, and F. Weber, ]. Phys. Conf.: Ser. 615, 012003 (2015)
[2] O. Zubairi et al, Arxiv:1504-03006v1, (2015) 26



Modified Hydrostatics

The stellar structure equation is derived to bel.2:

e = Energy Density, P = Pressure, m = mass, 7r = radial distance

v = Deformation Constant

Still need take Polar direction into account
& parameterize.

Total Mass of our mass distribution is: M = m("‘ )

Herrera L. et al 1999 l
where ris defined to be when P(r = R) =0 —_— N = ym

[1] O. Zubairi, A. Romero, and F. Weber, ]. Phys. Conf.: Ser. 615, 012003 (2015)
[2] O. Zubairi et al, Arxiv:1504-03006v1, (2015) 26



Modified Hydrostatics

Volume of sphere:

4
V: §7T7°

3

— V = §7T7“2,Z (Spheroid)

4

Stellar Structure

Parameterize z-component:

2= e V:§7T7“

4

Sy

|

Total Mass
dm
«—>| — =demriy
dr
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Modified Hydrostatics

Volume of sphere: Parameterize z-component:

4 4 4

V = §7T7’3 — V = §7T7“2z (Spheroid) | == Z = VT ——— |/ = §7T7“37
Stellar Structure l
Total Mass

dP [lfr + Arr3 P — ip ( — Q—m)v] dm
— = —(e+ P)2 : ’ > — =denr?
ar P r2 (1— 2m)7 dr !

* Mass & Structure Equations are both parameterized in terms of .
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Modified Hydrostatics

Volume of sphere:

4
V = §7T7°3

4

— V= §7T7“2z (Spheroid)

Stellar Structure

Parameterize z-component:

4 3

2= e V:§7T7“7

|

Total Mass
dm
«—>| — =demriy
dr

* Mass & Structure Equations are both parameterized in terms of .
- Can use an EoS in this limiting case of isotropy for initial calculations.
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Modified Hydrostatics

Volume of sphere: Parameterize z-component:

4 4 4
V = §7T’I"3 — V = §7T’I“2,Z (Spheroid) | =2 = VT =— | = §7T7“37

|

Stellar Structure

Total Mass
ir ir +4m%P — r (1 22)"] im_
%——(G-I—P) 2 (1= 2m) «—> %:467'('7“’}/

* Mass & Structure Equations are both parameterized in terms of .
- Can use an EoS in this limiting case of isotropy for initial calculations.
- However, we must also impose (Paret, Horvath, & Martinez, 2014)

Plz=2)=0
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Modified Hydrostatics

Volume of sphere: Parameterize z-component:

4 4 4
V = §7T’I"3 — V = gwrzz (Spheroid) | =2 = VT =— | = §7T7“37

|

Stellar Structure

Total Mass
ir ir +4m%P — r (1 22)"] im_
%——(G-I—P) 2 (1= 2m) «—> %:467'('7“’}/

* Mass & Structure Equations are both parameterized in terms of .
- Can use an EoS in this limiting case of isotropy for initial calculations.
- However, we must also impose (Paret, Horvath, & Martinez, 2014)

Plz=2)=0
P(r=R)=0

27



Mass-Radius Relations
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Mass-Radius Relations
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Mass-Radius Relations
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Mass-Radius Relations Model 111
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Mass-Radius Relations Model 111
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Mass-Radius Relations Model 111
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Pressure & Energy - Density Profiles Model III
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Deformation Model 111
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Deformity Oblate Spheroids
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Deformity Oblate Spheroids
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B
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Deformity Prolate Spheroids
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Deformity Prolate Spheroids
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Gravitational Mass-Quadrupole

'z Mass
B < > I
|  Homogeneity? S
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Gravitational Mass-Quadrupole

'z Mass
B < > I
|  Homogeneity? S

® The mass quadrupole moment (QM) is expected to be non-zero...
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Gravitational Mass-Quadrupole

'z Mass
B < > I
|  Homogeneity? S

® The mass quadrupole moment (QM) is expected to be non-zero...
® Indicating the mass is not evenly distributed throughout the deformed
object...
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Gravitational Mass-Quadrupole

'z Mass
o . > I
|  Homogeneity? S

® The mass quadrupole moment (QM) is expected to be non-zero...
® Indicating the mass is not evenly distributed throughout the deformed
object...

® The QM should NOT be symmetric and NOT be the same for prolate and
oblate stars..
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Gravitational Mass-Quadrupole

'z Mass
o . > I
|  Homogeneity? S

® The mass quadrupole moment (QM) is expected to be non-zero...
® Indicating the mass is not evenly distributed throughout the deformed
object...

® The QM should NOT be symmetric and NOT be the same for prolate and
oblate stars..

Q=103 (1~
3 41



Gravitational Mass-Quadrupole

Model III
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Mass Inhomogeneity Oblate Stars (y=0.8)

Model III
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Mass Inhomogeneity Oblate Stars (y=0.8)

Model III
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Mass Inhomogeneity Prolate Stars (y=1.20)
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Mass Inhomogeneity
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Gravitational Redshift
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Gravitational Redshift

Higher Frequency

500 600
Wavelength (nm)

A.Romero (SDSU 2015)

2N —1/2

R

46



Gravitational Redshift

The gravitational redshift of
deformed compact stars 1s
governed byl.2;

A.Romero (SDSU 2015)

2N —1/2

[1] O. Zubairi, A. Romero, and F. Weber, ]. Phys. Conf.: Ser. 615, 012003 (2015)
[2] O. Zubairi et al, Arxiv:1504-03006v1, (2015) 46



Gravitational Redshift

Model II1
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® In this work:
» Using our 1-D parameterized model, we were able to calculate the gravitational
mass-quadrupole moment of non-rotating neutron stars.
» Investigate the inhomogeneity of the mass distribution in oblate and prolate stars.
® From our results:
» The mass distribution is not symmetric among oblate and prolate stars.
» Hence, the deformation does not need to be high to see significant changes in
stellar properties such as mass, radii, redshift, and quadrupole moment.
® Requires a more detailed description in 2-Dimensions...
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® In this work:
» Using our 1-D parameterized model, we were able to calculate the gravitational
mass-quadrupole moment of non-rotating neutron stars.
» Investigate the inhomogeneity of the mass distribution in oblate and prolate stars.
® From our results:
» The mass distribution is not symmetric among oblate and prolate stars.
» Hence, the deformation does not need to be high to see significant changes in
stellar properties such as mass, radii, redshift, and quadrupole moment.
® Requires a more detailed description in 2-Dimensions...

2-D Stellar Structure

dPH dm”

dr dr Use in conjunction with a
dP, dm, NON ISOTROPIC EoS
dz dz
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Stellar Structure in 2D

We need to look at the symmetry again...

Prolate spheroid with Oblate spheroid with
radii r & z radiir & z

) Axial Symmetric

Weyl (Weyl H. 1918) Metric
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Stellar Structure in 2D

J62 — @2M\(1,2) 142 _ —2A(r,2) [ezu(r,z) (dfr2 n dZQ) n r2d¢2}

|

Need to calculate...
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Stellar Structure in 2D

J62 — @2M\(1,2) 142 _ —2A(r,2) [ezu(r,z) (er n dZZ) n r2d¢2}

|

Need to calculate...

Start with the Einstein Tensor Gttz Rtt — %R
1
G = RF, — -0" R 1
2 G' =R.—=R
2
GTZE RTZ
GZT'E RZ’P
1
G°.=R°. — =R
Vo Vo 2
1
¢ _ pP
G'y= Ry — ot




Stellar Structure in 2D

J62 — @2M\(1,2) 142 _ —2A(r,2) [ezu(r,z) (er n dZZ) n Tzdng}

|

Need to calculate...

Start with the Einstein Tensor Gttz Rtt — %R
1 b —
G'LLI/E R'uy o §5ILLVR Tt ‘ - - 1
T", = P G =1, = 5k
TZT — p G’r — RT
And equate to the . ~ ZZ ZZ
Energy-Momentum Tensor 1", =P G*= R,
G", = —8nT", T", =P, G*.= R*, — ER
7% = P :
’ G’ =R* — IR
¢ P 97" 5



Einstein’s Field Equations

1
Gt, = [e—ZV“/\ (zraEA 272\ + 20\ — 1 (BN)? — 192

(A

— 1%V — r (9N )] ,

Gr, = Lot (r (0N = 0 — 7 (0:1)?)

r

1
G*, =G, = —e 2"T22 ((2r0,\) (0,0) — 0,v) |

r

GF, = — Lo+ (r (0,02 ~ 0w — 7 (2.1)?) .

r

< r

G, = —e 22N ((a,nx)2 02u + 2 ((92)\)2) |

Zubairi et al, 2017 53



Einstein’s Field Equations

Herrera (2013) calculated these components as well (&Negreiros 2018) and

stated:
B 1 B D" 1 B D’ B’ 9 1 | Bge Daegg By 5
8”“__32{B+D+r(B+D)_(B)+r2[B+D_(B)]}’ (15)
1 [A'B" A'D' BD 1A D 1 Aw Dw AgBy AsDy ByDy
Smles = 5o [AB 0 "o AT T=a "D " aB T ap  BD )]’ (16)
B 1 (A" D" A'B" A'D  B'D 1 ApBy AgDg BogDg
8”13’/-’/_32[,4+D a8 " ap ~Bp "2"aB T ap T BD )]’ (17)
sep. = { A B (B LA By L HAw B Doy (18)
=T\ AT B ‘B’ T ATB T2 A T B B ’
1 (1[ A, D, By (A" D'\ B A B Dy 1,64 D
TY — o - | - 3 ]-
81 Ly B?{r[A D+B(A+D)+BA+BD+T2(A+D) (19)
A’ B’ D’
P,,, A P:vx _Pxx_Pn _Pxx Pzz
1[/A By, D
+- [(79+239 + Do) Pmy+Pmy,9+Pm—Pyy} — 0,
Ay By Dy A B D
Pyy-9+7(N+Pyy)+F(Pyy—me)+E(Pyy_PZZ)"'T[(X"'?E"‘E Prry"'P:;:y +2P:vy:0~

Herrera et al, arXiv:1301.2424 [gr-qc], 2013 & Negreiros et al, Universe, 2018 54
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Einstein’s Field Equations

Since the mathematical form of the Weyl metric, is axial symmetric...

Js2 — @2M\(1,2) 142 _ o—2A(r,2) [eQV(’r,z) (dr2 n sz) n Tqubz}
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Einstein’s Field Equations

Since the mathematical form of the Weyl metric, is axial symmetric...
Js2 — @2M\(1,2) 142 _ o—2A(r,2) [ezu(r,z) (er n dz2) n frzdgbz}

there will be off-diagonal terms suchthat 1", =17, # 0

in the energy-momentum tensor as described by

TH) =

S O O M

S T
~

N O O O
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Stellar Structure in 2D

Js2 — @2M\(1,2) 142 _ —2A(r,2) [ezu(r,z) (dTQ n sz) n r2d¢2}

Due to cylindrical symmetry, we need to consider the mass in both the radial and polar
directions.
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Stellar Structure in 2D

Js2 — @2M\(1,2) 142 _ —2A(r,2) [ezu(r,z) (dr2 n dzz) n r2d¢2}

Due to cylindrical symmetry, we need to consider the mass in both the radial and polar
directions.

We define rwo differential masses...

N N

N N
QA Idz
S, ——

N N

radius r, height z, thickness dr slab of radius r and thickness dz

dm ) dm 5
— = €2nrz —— = €nr
dr dz

56



Stellar Structure in 2D

Thus, with our differential masses:

orm(r,z) = 2mrze(r, z),

0,m(r,z) = mrie(r, z) .

57



Stellar Structure in 2D

Thus, with our differential masses:
orm(r,z) = 2mrze(r, z),
0,m(r,z) = mrie(r, z) .

Along with Einstein’s field equations, we obtain

orm(r,z) = %Gtt.

57



Stellar Structure in 2D

Thus, with our differential masses:

orm(r,z) = 2mrze(r, z),

0,m(r,z) = mrie(r, z) .

Along with Einstein’s field equations, we obtain

orm(r,z) = %Gtt.

leading to:

/07“ (Orm(r,z)) dr = — /OT O (72122 2 (9, A) (Orv — O, N)) dr .

57



Stellar Structure in 2D

Thus, with our differential masses:

orm(r,z) = 2mrze(r, z),
0,m(r,z) = mrie(r, z) .

Along with Einstein’s field equations, we obtain

orm(r,z) = %Gtt.

leading to:

/07“ (Orm(r,z)) dr = — /OT O (72122 2 (9, A) (Orv — O, N)) dr .

57



Stellar Structure in 2D

Thus, with our differential masses:

orm(r,z) = 2mrze(r, z),
0,m(r,z) = mrie(r, z) .

Along with Einstein’s field equations, we obtain

orm(r,z) = %Gtt.

leading to:

/07“ (Orm(r,z)) dr = — /OT O (72122 2 (9, A) (Orv — O, N)) dr .

The r term vanishes!!!

57



Stellar Structure in 2D

Thus, with our differential masses:
orm(r,z) = 2mrze(r, z),
0,m(r,z) = mrie(r, z) .

Along with Einstein’s field equations, we obtain

orm(r,z) = %Gtt.

leading to:

/07“ (Orm(r,z)) dr = — /OT O (72122 2 (9, A) (Orv — O, N)) dr .

The r term vanishes!!!

Thus, we have lost all the
information about the radial
coordinate... 57



Stellar Structure in 2D

Thus, with our differential masses:
orm(r,z) = 2mrze(r, z),
0,m(r,z) = mrie(r, z) .

Along with Einstein’s field equations, we obtain

orm(r,z) = %Gtt.

leading to:

/07“ (Orm(r,z)) dr = — /OT Or (72122 2 (9, N) (Orv — O, N)) dr.

The r term vanishes!!!

Thus, we have lost all the
information about the radial
coordinate... 57



Stellar Structure in 2D

Starting with our y-TOV...
P Ir+4mr3P — Lr (1 —22)7]
% ——(€—|—P) 742 (1 2:1)7

along with our parameterization: z=yr, we can apply a transformation...
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P Ir+4mr3P — Lr (1 —22)7]
% ——(€—|—P) 742 (1 2:1)7

along with our parameterization: z=yr, we can apply a transformation...

dz

Our step dr is small (on the order of meters) > Y = d_
T
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Stellar Structure in 2D

Starting with our y-TOV...
1 3 1 2m\ Y
dP [§T—|—47TT P—§fr(1 T)}

— = —(e+ P
dr ( ) 72 (1 2m ) Y
T
along with our parameterization: z=yr, we can apply a transformation...
dz
Our step dr is small (on the order of meters) > — d_
(&

y
[%T + 47 Py — S (1 Qm(r’z)) }

d P -
d—H = —(e+ 7)) 2 7
r 2 (1 - 2mte))
] ; .-
> > > 2m(r,z)
P, 5 tan (5) Po- g (1)
= —(e+ Pyp)= :

dz 22 (1 2m(7°,z)'y)7
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Stellar Structure in 2D

Starting with our y-TOV...

dP [%T—I—ZLTFTSP— %7" (1 2m)v}
_ T
o = et P) om 7
dr 7"2 (1 m )
T
along with our parameterization: z=yr, we can apply a transformation...
dz
Our step dr is small (on the order of meters) > Y = d
(&

N
[%T -+ 47T7°3P|| — %7“ (1 @) }

d;;” —(e+ Py ( ) -
%:_(E—I—PL) —_+47T( ) =5 (1 @7>7_

()



Stellar Structure in 2D

Where the mass is given by:

dm )

—— = 27rze
dr

dm 5
— = TIre
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Stellar Structure in 2D

Where the mass is given by: If we integrate then add...
dm Miotal (T, 2) = 2717 2€
— Drroe total\"
dr = 2m(r, z)
dm o
— = Tre
dz

However, this does not correctly define the
total gravitational mass of an oblong spheroid...

4
M(r,z) = §7T7°226

2
M(r,z) = 2mrize — §7T7‘2ze

= 2m(r, z) — gm(r, )
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2-D Stellar Structure34

We need to break up the mass equally to take the mass in the equatorial and polar
directions separately but that are confined in a total gravitational mass given by:

1
M(r, z) = 27rze + mrie — §7T7°226

dm dm 1
= | 37?7“ Z€

dr dz

[3] O. Zubairi, and F. Weber, ]J. Phys. Conf.: Ser. 845, 012005 (2017)
[4] O. Zubairi, D. Wigley, and F. Weber, Int. J. Mod. Phys. Conf. Ser. 45, 1760029 (2017) 60
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We need to break up the mass equally to take the mass in the equatorial and polar
directions separately but that are confined in a total gravitational mass given by:

1
M(r, z) = 27rze + mrie — §7T7“226

dm dm 1

_ I
— | Troze
ﬁ dr dz 3 )
Py(r=R)=0 _\ _ The deformation is completely dictated by the
Pi(z=2)=0 | | anisotropies in the EoS...
1 3 1 2M(7,2z) v
dp,  (e+ Py {5"“ +dmri By — g (1 ; )
N | B o
T
e+ P [ £ +an (2) P - g (1 2aan)
dPJ_ 1 27y y = 27y z
dz 2 (1 2M<r,z>v)”
[3] O. Zubairi, and F. Weber, J. Phys. Conf.: Ser. 845, 012005 (2017) i ~
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Anisotropic Eos Model3

Quark-Hadron (Model III)
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Anisotropic Eos Model3
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Anisotropic Eos Model3

® In contrast to traditional numerical models, our two dimensional models will require
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® In contrast to traditional numerical models, our two dimensional models will require
other strategies...

® We can not simply have mass-radius relations—as they will not give us any information
on the deformation.

® We will have to look at the internal properties—such as pressure profiles both in the
equatorial and polar directions.

(@) (b)

TOV Equatio&

Mass

Pressure

N

Energy-Density Radius

[3] O. Zubairi, and F. Weber, ]J. Phys. Conf.: Ser. 845, 012005 (2017) 62




Anisotropic Eos Model3

® In contrast to traditional numerical models, our two dimensional models will require
other strategies...

® We can not simply have mass-radius relations—as they will not give us any information
on the deformation.

® We will have to look at the internal properties—such as pressure profiles both in the
equatorial and polar directions.

® From the non-isotropic EoS, we can then investigate the change in mass.

(@) (b)
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Pressure Profiles—2D Model34
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Pressure Profiles—2D Model34
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Results—2D Model
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Conclusions

® In this work:

» Using our 1-D parameterized model and our 2-D model, we were able to calculate
the gravitational mass-quadrupole moment of non-rotating neutron stars.
» Investigate the inhomogeneity of the mass distribution in oblate and prolate stars.
® From our results:
» The mass distribution is not symmetric among oblate and prolate stars.
» Thus, these deformed objects are distinct and are NOT the same.
» From the stellar properties such as masses, radii, pressure and energy-density

profiles, gravitational redshift, and quadrupole moment, we see that
deformation plays a pivotal role in the stellar structure in of these compact
objects...
» Hence, the deformation does not need to be high to see significant changes in said
stellar properties.
® Continue this work by analyzing the Weyl metric in greater detail (i.e. perturbations)
® Which will (hopefully) allow unique solutions to axially symmetric geometries for
stellar configurations.
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